/ColorSpace /DeviceGray << >> /Resources This use of BaSO 4 is possible because of its low solubility. x�+� Show that it is not appropriate to neglect the changes in the initial concentrations of the common ions. /a0 (a) Ksp = [La3+] [latex]{\left[{\text{IO}}_{3}{}^{\text{-}}\right]}^{3}[/latex] = [latex]\left(\frac{1}{3}\times \text{3.1}\times {10}^{-3}\right)[/latex] (3.1 × 10–3)3 = (0.0010)(3.0 × 10–8) = 3.0 × 10–11; (b) Ksp = [Cu2+] [latex]{\left[{\text{IO}}_{3}{}^{\text{-}}\right]}^{2}[/latex] = x(2x)2 = 7.4 × 10–8, [latex]\left[{\text{IO}}_{3}{}^{\text{-}}\right][/latex] = 2x = 5.3 × 10–3, 57. For treatment of 1000 L, 1000 L × 3.97 g/L = 3.97 × 103 g = 3.97 kg. endobj << Show that changes in the initial concentrations of the common ions can be neglected. Water insoluble matter. Not more than 0,2 %. The process of photosynthesis that enables plants to convert water, sunlight, and carbon dioxide into glucose and oxygen is a chemical reaction. /Type /ExtGState 20. << Water consists of the elements hydrogen and oxygen combined in a 2 to 1 ratio. Potassium oxalate, K, About 50% of urinary calculi (kidney stones) consist of calcium phosphate, Ca, The pH of normal urine is 6.30, and the total phosphate concentration ( [latex]{\left[\text{PO}}_{4}{}^{\text{3-}}][/latex] + [latex]\left[{\text{HPO}}_{4}{}^{\text{2-}}\right][/latex] + [latex]\left[{\text{H}}_{2}{\text{PO}}_{4}{}^{\text{-}}\right][/latex] + [H, Magnesium metal (a component of alloys used in aircraft and a reducing agent used in the production of uranium, titanium, and other active metals) is isolated from sea water by the following sequence of reactions:[latex]{\text{Mg}}^{\text{2+}}\left(aq\right)+{\text{Ca(OH)}}_{2}\left(aq\right)\longrightarrow {\text{Mg(OH)}}_{2}\left(s\right)+{\text{Ca}}^{\text{2+}}\left(aq\right)[/latex][latex]{\text{Mg(OH)}}_{2}\left(s\right)+\text{2HCl}(aq)\longrightarrow {\text{MgCl}}_{2}\left(s\right)+{\text{2H}}_{2}\text{O}\left(l\right)[/latex], Hydrogen sulfide is bubbled into a solution that is 0.10. Search results for canula at Sigma-Aldrich. Depending on the hydrolysis conditions, there are fully hydrolyzed PVA and partially hydrolyzed PVA as shown in Fig. stream The cyanide anion, denoted by the chemical formula CN – . 8H2O does not. /ExtGState endstream (d) Ethene is burnt in the presence of oxygen to form carbon dioxide, water and releases heat and light. << What additional information do we need to answer the following question: How is the equilibrium of solid silver bromide with a saturated solution of its ions affected when the temperature is raised? << The decomposition of water is shown at the macroscopic, microscopic, and symbolic levels. /ExtGState Perform the following calculations involving concentrations of iodate ions: The iodate ion concentration of a saturated solution of La(IO, Find the concentration of iodate ions in a saturated solution of Cu(IO, Calculate the molar solubility of AgBr in 0.035, How many grams of Milk of Magnesia, Mg(OH). /Type /XObject /Height 1894 Compare Products: Select up to 4 products. Water can be broken down into hydrogen and oxygen gases by the addition of energy. Which of the following will form last? << T(�2P�01R0�4�3��Tе01Գ42R(JUW��*��)(�ԁ�@L=��\.�D��b� /x14 6 0 R /Subtype /Form T(�2�331T015�3� S��� /BitsPerComponent 1 However, the pH of the solution, which must be ~ 5, can lead to precipitation and/or adsorption problems with other analytes and the dissolution rate is slow. >> Subsidiary colouring matters. The two applications demonstrate that the presented framework is a useful instrument for selection of green solvents or environmentally sound solvent mixts. The test for inorganic sulfides is carried out only when the pH of an aqueous solution of the unknown is greater than 10. [latex]\left[{\text{Ag}}^{\text{+}}\right]=\frac{1.8\times {10}^{-10}}{\left[0.10\right]}\text{=1.8}\times {10}^{-9}\text{}M[/latex], [latex]\left[{\text{Ag}}^{\text{+}}\right]=\frac{1.5\times {10}^{-16}}{1.0\times {10}^{-2}}=\text{1.5}\times {10}^{-9}\text{}M[/latex]. /XObject /ColorSpace /DeviceGray 59. [latex]\frac{1}{2}\left(2.0\times {10}^{-4}\right)\text{}M=\text{1.0}\times {10}^{-4}\text{}M[/latex]. /Interpolate true SrCO3 will form first, since it has the smallest Ksp value it is the least soluble. /BBox [0 0 456 455] Organic compounds other than colouring matters: 4-aminobenzene-1-sulfonic acid. Given the concentration of Ca2+ in solution, the maximum [latex]{\text{[PO}}_{4}{}^{\text{3-}}\right][/latex] can be calculated by using the Ksp expression for Ca3(PO4)2: Ksp = 1 × 10–25 = [Ca2+]3 [latex]{{\text{[PO}}_{4}{}^{\text{3-]}}}^{2}[/latex], [latex]{\left[{\text{Ca}}^{\text{2+}}\right]}_{\text{urine}}=\frac{0.10\text{}g\left(\frac{1\text{}mol}{40.08\text{}g}\right)}{1.4\text{L}}=\text{1.8}\times {10}^{-3}\text{}M[/latex], [latex]{{\text{[PO}}_{4}{}^{\text{3-}}]}^{2}=\frac{1\times {10}^{-25}}{{\left(1.8\times {10}^{-3}\right)}^{3}}=\text{1.7}\times {10}^{-17}[/latex], [latex]{{\text{[PO}}_{4}{}^{\text{3-}}]}^{2}=4\times {10}^{-9}\text{}M[/latex]. The molar concentration is: [latex]\frac{1.304{\text{g L}}^{-1}}{24.305{\text{g mol}}^{-1}}=\text{0.05365}M[/latex]. /CA 1 /SMask 11 0 R /BitsPerComponent 1 [latex]{\text{Ca}}_{3}{{\text{(PO}}_{4})}_{2}\left(s\right)\rightleftharpoons {\text{3Ca}}^{\text{2+}}\left(aq\right)+{\text{2PO}}_{4}{}^{\text{3-}}\left(aq\right)[/latex]. Perform these calculations for nickel(II) carbonate. /ExtGState Finally, SC is washed with water to remove residual calcium acetate and then washed using absolute ethanol (Figure 1E). /Width 1894 The added amount of OH– required is found from the solubility product: [Mg2+][OH–]2 = (5.369 × 10–5)[OH–]2 = 1.5 × 10–11 = Ksp. /Length 1076 For example, if we have a mixture of 150 g of sodium acetate (CH 3 CO 2 Na) and 50 g of KBr, we can separate the two compounds by dissolving the mixture in 100 g of water at 80°C and then cooling the solution slowly to 0°C. �0�{�~ �%���+k�R�6>�( /Width 1894 �0FQ�B�BW��~���Bz��~����K�B W ̋o Total not more than 0,5 %. /Height 3508 ----- ABSTRACT This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500 The test methods have been selected to meet the needs of … << As the value of [Ag+] is smaller for AgI, AgI will precipitate first. The results of this case study indicate that methanol-water or ethanol-water mixts. >> /Subtype /Image When the initial 1.035 g/L is reduced to 0.1% of the original, the molarity is calculated as: [latex]\frac{0.001\times {\text{1.305 g L}}^{-1}}{24.305{\text{g mol}}^{-1}}=\text{5.369}\times {10}^{-5}\text{}M[/latex]. /Subtype /Image �%� ��yԂC��A%� x'��]�*46�� �Ip� �vڵ�ǒY Kf p��'�^G�� ���e:Kf P����9�"Kf ���#��Jߗu�x�� ��L�lcBV�ɽ;���s$#+�Lm�, tYP ��������7�y`�5�];䞧_��zON��ΒY \t��.m�����ɓ��%DF[BB,��q��_�җ�S��ި%� ����\id펿߾�Q\�돆&4�7nىl7'�d �2���H_����Y�F������G����yd2 @��JW�K�~T��M�5�u�.�g��, gԼ��|I'��{U-wYC:޹,Mi�Y2 �i��-�. /S /Alpha �[i&8n��d ���}�'���½�9�o2 @y��51wf���\��� pN�I����{�{�D뵜� pN�E� �/n��UYW!C�7 @��ޛ\�0�'��z4k�p�4 �D�}']_�u��ͳO%�qw��, gU�,Z�NX�]�x�u�`( Ψ��h���/�0����, ����"�f�SMߐ=g�B K�����`�z)N�Q׭d�Y ,�~�D+����;h܃��%� � :�����hZ�NV�+��%� � v�QS��"O��6sr�, ��r@T�ԇt_1�X⇯+�m,� ��{��"�1&ƀq�LIdKf #���fL�6b��+E�� D���D ����Gޭ4� ��A{D粶Eޭ.+b�4_�(2 ! Purity. /G 13 0 R >> endstream Not more than 5,0 %. /Length 457 However, additional [OH–] must be added to maintain the equilibrium: [latex]{\text{Mg(OH)}}_{2}\left(s\right)\rightleftharpoons {\text{Mg}}^{\text{2+}}\left(aq\right)+{\text{2OH}}^{\text{-}}\left(aq\right)\left({K}_{\text{sp}}=\text{1.5}\times {10}^{-11}\right)[/latex]. Hazardous waste is regulated under the Resource Conservation and Recovery Act (RCRA). /BitsPerComponent 1 stream /AIS false /ColorSpace /DeviceGray >> The acetate anion, denoted by the chemical formula CH 3 COO –. x�+� >> effect on equilibrium when a substance with an ion in common with the dissolved species is added to the solution; causes a decrease in the solubility of an ionic species, or a decrease in the ionization of a weak acid or base, molar solubility 10 0 obj With what volume of water must a precipitate containing NiCO, Iron concentrations greater than 5.4 × 10, What reagent might be used to separate the ions in each of the following mixtures, which are 0.1, [latex]{\text{Hg}}_{2}{}^{\text{2+}}[/latex] and Cu, [latex]{\text{SO}}_{4}{}^{\text{2-}}[/latex] and Cl, [latex]{\text{CO}}_{3}{}^{\text{2-}}[/latex] and OH, The calcium ions in human blood serum are necessary for coagulation (Figure 4). /ca 1 It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a … Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. 3 0 obj 5.4(a) and (b) respectively. 5 0 obj /BitsPerComponent 8 4 0 obj endobj /SMask 12 0 R /a0 << Ethylenediaminetetraacetic acid (EDTA) is an aminopolycarboxylic acid with the formula [CH 2 N(CH 2 CO 2 H) 2] 2.This white, water-soluble solid is widely used to bind to iron and calcium ions. For 1000 L: [latex]{\text{mass Ca(OH)}}_{2}=2.65\times {10}^{-4}{\text{mol Ca(OH)}}_{2}{\text{L}}^{-1}\times \text{1.00}\times {10}^{3}\text{L}\times \frac{74.0946\text{g}}{{\text{mol Ca(OH)}}_{2}}=\text{20 g}[/latex]. equilibrium constant for the dissolution of a slightly soluble electrolyte, [latex]\text{AgCl}\left(s\right){\underset{\text{precipitation}}{\overset{\text{dissolution}}}\rightleftharpoons}{\text{Ag}}^{\text{+}}\left(aq\right)+{\text{Cl}}^{\text{-}}\left(aq\right)[/latex], [latex]\text{AgCl}\left(s\right)\rightleftharpoons {\text{Ag}}^{\text{+}}\left(aq\right)+{\text{Cl}}^{\text{-}}\left(aq\right){K}_{\text{sp}}=\left[{\text{Ag}}^{\text{+}}\left(aq\right)\right]\left[{\text{Cl}}^{\text{-}}\left(aq\right)\right][/latex], [latex]{\text{M}}_{p}{\text{X}}_{q}\left(s\right)\rightleftharpoons p{\text{M}}^{\text{m+}}\left(aq\right)+q{\text{X}}^{\text{n-}}\left(aq\right)[/latex], [latex]{\text{CaF}}_{2}\left(s\right)\rightleftharpoons {\text{Ca}}^{\text{2+}}\left(aq\right)+{\text{2F}}^{\text{-}}\left(aq\right)[/latex], [latex]{K}_{\text{sp}}={\text{[Ca}}^{\text{2+}}\text{]}\text{[}{\text{F}}^{\text{-}}{]}^{2}=\text{(2.1}\times {10}^{-4}\big){\left(4.2\times {10}^{-4}\right)}^{2}=\text{3.7}\times {10}^{-11}[/latex], [latex]{\text{Mg(OH)}}_{2}\left(s\right)\rightleftharpoons {\text{Mg}}^{\text{2+}}\left(aq\right)+{\text{2OH}}^{\text{-}}\left(aq\right)[/latex], [latex]\text{CuBr}\left(s\right)\rightleftharpoons {\text{Cu}}^{\text{+}}\left(aq\right)+{\text{Br}}^{\text{-}}\left(aq\right)[/latex], [latex]{K}_{\text{sp}}=\text{[}{\text{Cu}}^{\text{+}}{]\text{[}\text{Br}}^{\text{-}}\text{]}[/latex], [latex]{K}_{\text{sp}}={\text{[Cu}}^{\text{+}}{]\left[\text{Br}}^{\text{-}}][/latex], [latex]6.3\times {10}^{-9}=\left(x\right)\left(x\right)={x}^{2}[/latex], [latex]x=\sqrt{\left(6.3\times {10}^{-9}\right)}=\text{7.9}\times {10}^{-5}[/latex], [latex]{\text{Ca(OH)}}_{2}\left(s\right)\rightleftharpoons {\text{Ca}}^{\text{2+}}\left(aq\right)+{\text{2OH}}^{\text{-}}\left(aq\right)[/latex], [latex]{K}_{\text{sp}}={\text{[Ca}}^{\text{2+}}{]\left[\text{OH}}^{\text{-}}{]}^{2}[/latex], [latex]8.0\times {10}^{-6}=\left(x\right)\left(2x{\right)^{2}=\left(x\right)\left(4{x}^{2}\right)=4{x}^{3}[/latex], [latex]x=\sqrt[3]{\frac{8.0\times {10}^{-6}}{4}}=\text{1.3}\times {10}^{-2}[/latex], [latex]{\text{Hg}}_{2}{\text{Cl}}_{2}\left(s\right)\rightleftharpoons {\text{Hg}}_{2}{}^{\text{2+}}\left(aq\right)+{\text{2Cl}}^{\text{-}}\left(aq\right){K}_{\text{sp}}=\text{1.1}\times {10}^{-18}[/latex], [latex]{\text{CaCO}}_{3}\left(s\right)\rightleftharpoons {\text{Ca}}^{\text{2+}}\left(aq\right)+{\text{CO}}_{3}{}^{\text{2-}}\left(aq\right)[/latex], [latex]{\text{Mg(OH)}}_{2}\left(s\right)\rightleftharpoons {\text{Mg}}^{\text{2+}}\left(aq\right)+{\text{2OH}}^{\text{-}}\left(aq\right){K}_{\text{sp}}=\text{2.1}\times {10}^{-13}[/latex], [latex]Q={\text{[Mg}}^{\text{2+}}{]\left[\text{OH}}^{\text{-}}{]}^{2}=\text{(0.0537)(}{\text{0.0010)}}^{2}=\text{5.4}\times {10}^{-8}[/latex], [latex]\text{AgCl}\left(s\right)\rightleftharpoons {\text{Ag}}^{\text{+}}\left(aq\right)+{\text{Cl}}^{\text{-}}\left(aq\right)[/latex]. << @�Svgvfv�����h��垼N�>� _���G @}���> ����G��If 0^qd�N2 ���D�� `��ȒY �VY2 ���E�� `$�ȒY �#�,� �(�ȒY �!Y2 �d#Kf �/�&�ȒY ��b�|e�, �]Mf 0� �4d ӐY LCf 0 � �4d ӐY LCf 0 � �4d ӐY LCf 0 � �4d ӐY LCf 0 � �4d ӐY LCf 0 � �4d ӐY LCf 0 � �4d ӐY LCf 0 � �4d ӐY LCf 0 � �4d ӐY LCf 0 � �0A֠؄� �5jФNl\��ud #D�jy��c&�?g��ys?zuܽW_p�^2 �^Qջ�3����3ssmBa����}l˚���Y tIhyכkN�y��3�%8�y� << << /Subtype /Form /ExtGState << }w�^m���iHCn�O��,� ���׋[x��P#F�6�Di(2 ������L�!#W{,���,� T}I_��O�-hi��]V��,� T}��E�u 2 0 obj /CA 1 Assuming that no equilibria other than dissolution are involved, calculate the molar solubility of each of the following from its solubility product: Assuming that no equilibria other than dissolution are involved, calculate the concentration of all solute species in each of the following solutions of salts in contact with a solution containing a common ion. >> This use of BaSO, Public Health Service standards for drinking water set a maximum of 250 mg/L (2.60 × 10, Assuming that no equilibria other than dissolution are involved, calculate the concentrations of ions in a saturated solution of each of the following (see, The following concentrations are found in mixtures of ions in equilibrium with slightly soluble solids. x���1  �O�e� ��� >> /Filter /FlateDecode [latex]Q={\text{[Ag}}^{\text{+}}{]\left[\text{Cl}}^{\text{-}}]=\text{(1.0}\times {10}^{-4})\left(1.0\times {10}^{-4}\right)=\text{1.0}\times {10}^{-8}>{K}_{\text{sp}}[/latex], [latex]{\text{CaC}}_{2}{\text{O}}_{4}\left(s\right)\rightleftharpoons {\text{Ca}}^{\text{2+}}\left(aq\right)+{\text{C}}_{2}{\text{O}}_{4}{}^{\text{2-}}\left(aq\right)[/latex], [latex]Q={K}_{\text{sp}}={\text{[Ca}}^{\text{2+}}{]\left[\text{C}}_{2}{\text{O}}_{4}{}^{\text{2-}}]\text{}=\text{2.27}\times {10}^{-9}[/latex], [latex]\left(2.2\times {10}^{-3}\right){\text{[C}}_{2}{\text{O}}_{4}{}^{\text{2-}}]=\text{2.27}\times {10}^{-9}[/latex], [latex]\left[{\text{C}}_{2}{\text{O}}_{4}{}^{\text{2-}}\right]=\frac{2.27\times {10}^{-9}}{2.2\times {10}^{-3}}\text{=1.0}\times {10}^{-6}[/latex], [latex]{\text{Mn(OH)}}_{2}\left(s\right)\rightleftharpoons {\text{Mn}}^{\text{2+}}\left(aq\right)+{\text{2OH}}^{\text{-}}\left(aq\right){K}_{\text{sp}}=\text{4.5}\times {10}^{-14}[/latex], [latex]{K}_{\text{sp}}={\text{[Mn}}^{\text{2+}}{]\left[\text{OH}}^{\text{-}}{]}^{2}[/latex], [latex]\left(1.8\times {10}^{-6}\right){\left[{\text{OH}}^{\text{-}}\right]}^{2}=\text{4.5}\times {10}^{-14}[/latex], [latex]\left[{\text{OH}}^{\text{-}}\right]=\text{1.6}\times {10}^{-4}\text{}M[/latex], [latex]\begin{array}{c}\text{pOH}=\text{-log}\left[{\text{OH}}^{\text{-}}\right]=\text{-log}\left(1.6\times 10 - 4\right)=\text{3.80}\\ \text{pH}=\text{14.00}-\text{pOH}=\text{14.00}-\text{3.80}=\text{10.20}\end{array}[/latex], [latex]5{\text{Ca}}^{\text{2+}}+{\text{3PO}}_{4}{}^{\text{3-}}+{\text{OH}}^{\text{-}}\rightleftharpoons {\text{Ca}}_{10}{{\text{(PO}}_{4})}_{6}\cdot {\text{(OH)}}_{2}\left(s\right)[/latex], [latex]\text{AgCl}\left(s\right)\rightleftharpoons {\text{Ag}}^{\text{+}}\left(aq\right)+{\text{Cl}}^{\text{-}}\left(aq\right){K}_{\text{sp}}=\text{1.8}\times {10}^{-10}[/latex], [latex]\text{AgI}\left(s\right)\rightleftharpoons {\text{Ag}}^{\text{+}}\left(aq\right)+{\text{I}}^{\text{-}}\left(aq\right)K\text{sp}=\text{1.5}\times {10}^{-16}[/latex], [latex]Q={\text{[Ag}}^{\text{+}}{]\left[\text{I}}^{\text{-}}]={\text{[Ag}}^{\text{+}}\text{](0.0010)}=\text{1.5}\times {10}^{-16}[/latex], [latex][{\text{Ag}}^{\text{+}}\text{]}=\frac{\text{1.8}\times {10}^{-10}}{0.10}=\text{1.8}\times {10}^{-9}[/latex], [latex]{Q}_{\text{sp}}={\text{[Ag}}^{\text{+}}{]\left[\text{Cl}}^{\text{-}}]={\text{[Ag}}^{\text{+}}\text{](0.10)}=\text{1.8}\times {10}^{-10}[/latex], [latex][{\text{Ag}}^{\text{+}}\text{]}=\frac{1.8\times {10}^{-10}}{0.10}\text{=1.8}\times {10}^{-9}M[/latex], [latex]{\text{CH}}_{3}{\text{CO}}_{2}\text{H}+{\text{H}}_{2}\text{O}\rightleftharpoons {\text{H}}_{3}{\text{O}}^{\text{+}}+{\text{CH}}_{3}{\text{CO}}_{2}{}^{\text{-}}[/latex], [latex]\text{AgI}\left(s\right)\rightleftharpoons {\text{Ag}}^{\text{+}}\left(aq\right)+{\text{I}}^{\text{-}}\left(aq\right)[/latex], [latex]\text{CdS}\left(s\right)\rightleftharpoons {\text{Cd}}^{\text{2+}}\left(aq\right)+{\text{S}}^{\text{2-}}\left(aq\right)[/latex], [latex]{K}_{\text{sp}}=\left[{\text{Cd}}^{\text{2+}}\right]\left[{\text{S}}^{\text{2-}}\right]=1.0\times {10}^{-28}[/latex], [latex]\left(0.010+x\right)\left(x\right)=\text{1.0}\times {10}^{-28}[/latex], [latex]{x}^{2}+\text{0.010}x-\text{1.0}\times {10}^{-28}=0[/latex], [latex]{K}_{\text{sp}}={\text{[Cd}}^{\text{2+}}{]\left[\text{S}}^{\text{2-}}]=\text{1.0}\times {10}^{-28}[/latex], [latex]\left(0.010\right)\left(x\right)=\text{1.0}\times {10}^{-28}[/latex], [latex]x=\text{1.0}\times {10}^{-26}[/latex], [latex]{\text{Mp}}_{}{\text{Xq}}_{}\left(s\right)\rightleftharpoons p{\text{M}}^{\text{m+}}\left(aq\right)+q{\text{X}}^{\text{n-}}\left(aq\right)[/latex], [latex]{K}_{\text{sp}}={{\text{[M}}^{\text{m+}}\text{]}}^{\text{p}}{{\text{[X}}^{\text{n-}}]}^{\text{q}}[/latex], Writing Equations and Solubility Products, Precipitation of AgCl upon Mixing Solutions, Write chemical equations and equilibrium expressions representing solubility equilibria, Carry out equilibrium computations involving solubility, equilibrium expressions, and solute concentrations, AgI, silver iodide, a solid with antiseptic properties, [latex]\text{AgI}\left(s\right)\rightleftharpoons {\text{Ag}}^{\text{+}}\left(aq\right)+{\text{I}}^{\text{-}}\left(aq\right){K}_{\text{sp}}={\text{[Ag}}^{\text{+}}{\right]\left[\text{I}}^{\text{-}}\right][/latex], [latex]{\text{CaCO}}_{3}\left(s\right)\rightleftharpoons {\text{Ca}}^{\text{2+}}\left(aq\right)+{\text{CO}}_{3}{}^{\text{2-}}\left(aq\right){K}_{\text{sp}}=\left[{\text{Ca}}^{\text{2+}}{\right]\left[\text{CO}_{3}{}^{\text{2-}}\right][/latex], [latex]{\text{Mg}\left(\text{OH}\right)}_{2}\left(s\right)\rightleftharpoons {\text{Mg}}^{\text{2+}}\left(aq\right)+{\text{2OH}}^{\text{-}}\left(aq\right){K}_{\text{sp}}={\text{[Mg}}^{\text{2+}}\right]\left[{\text{OH}}^{\text{-}}{\right]^{2}[/latex], [latex]{\text{Mg}\left(\text{NH}}_{4}{\right)\text{PO}}_{4}\left(s\right)\rightleftharpoons {\text{Mg}}^{\text{2+}}\left(aq\right)+{\text{NH}}_{4}{}^{\text{+}}\left(aq\right)+{\text{PO}}_{4}{}^{\text{3-}}\left(aq\right){K}_{\text{sp}}={\left[\text{Mg}}^{\text{2+}}{\right]\left[\text{NH}}_{4}{}^{\text{+}}{\right]\left[\text{PO}}_{4}{}^{\text{3-}}\right][/latex], [latex]{\text{Ca}}_{5}{\text{(PO}}_{4}\right)3\text{OH}\left(\text{s}\right)\rightleftharpoons {\text{5Ca}}^{\text{2+}}\left(aq\right)+{\text{3PO}}_{4}{}^{\text{3-}}\left(aq\right)+\text{OH}-\left(aq\right){K}_{\text{sp}}={{\text{[Ca}}^{\text{2+}}\text{]}}^{5}{\left[\text{PO}}_{4}{}^{\text{3-}}{\right]}^{3}\left[{\text{OH}}^{\text{-}}\right][/latex], [latex]{\text{Mp}}_{}{\text{Xq}}_{}\left(s\right)\rightleftharpoons p{\text{M}}^{\text{m+}}\left(aq\right)+q{\text{X}}^{\text{n-}}\left(aq\right){K}_{\text{sp}}={{\text{[M}}^{\text{m+}}\text{]}}^{\text{p}}{{\text{[X}}^{\text{n-}}\right]}^{\text{q}}[/latex].